Step of Proof: eq_int_cases_test
9,38
postcript
pdf
Inference at
*
1
0
I
of proof for Lemma
eq
int
cases
test
:
1.
A
: Type
2.
x
:
A
3.
y
:
A
4.
P
:
A
5.
i
:
6.
j
:
7.
P
(if (
i
=
j
) then
x
else
y
fi )
P
(if (
i
=
j
) then
x
else
y
fi )
latex
by (%S%
\p.
\p
let UA = get_term_arg `UA` p
\p
in let A = get_term_arg `A` p
\pin
in let e = get_term_arg `e` p
\p
in let x = get_term_arg `x` p
\p
in
\pi
AssertL
\piAsse
[mk_member_term UA A
\piAs
;mk_member_term A e
\piAs
;mk_all_term (dv x) A (mk_member_term
\piAs;mk_all_term (dv x) A (mk_me
UA (mk_equal_term A e x))
\piAs
]
\pi
p)
latex
\p
1
: .....assertion..... NILNIL
\p1:
Type
\p
2
: .....assertion..... NILNIL
\p2:
8.
Type
\p2:
(
i
=
j
)
\p
3
: .....assertion..... NILNIL
\p3:
8.
Type
\p3:
9. (
i
=
j
)
\p3:
bb
:
. ((
i
=
j
) =
bb
)
Type
\p
4
:
\p4:
8.
Type
\p4:
9. (
i
=
j
)
\p4:
10.
bb
:
. ((
i
=
j
) =
bb
)
Type
\p4:
P
(if (
i
=
j
) then
x
else
y
fi )
\p
.
Definitions
,
t
T
,
(
i
=
j
)
,
if
b
then
t
else
f
fi
,
f
(
a
)
,
,
,
x
:
A
B
(
x
)
,
Type
origin